
Simon Brown

Modular monoliths

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising
software architecture

c4model.com

A well structured codebase
is easy to visualise

Component diagram
(level 3)

Container diagram
(level 2)

Context diagram
(level 1)

Class diagram
(level 4)

Component diagram
(level 3)

Container diagram
(level 2)

Context diagram
(level 1)

Class diagram
(level 4)

Component diagram
(level 3)

Container diagram
(level 2)

Context diagram
(level 1)

Class diagram
(level 4)

Component diagram
(level 3)

Container diagram
(level 2)

Context diagram
(level 1)

Code diagram
(level 4)

Where’s my
“component”?

(the “Tweet Component” doesn’t exist as a single thing;
it’s a combination of interfaces and classes

across a layered architecture)

“ ”“the component exists
conceptually”

Abstractions should
reflect the code

“model-code gap”

“ ”Our architecture diagrams
don’t match the code.

“architecturally-evident coding style”

The code structure should reflect
the architectural intent

Package by layer

Organise code based upon
what the code does from
a technical perspective

Package by layer
is a “horizontal” slicing

Also sample codebases,
starter projects, demos

at conferences, etc…

“ ”
Cargo cult programming can also
refer to the results of applying a

design pattern or coding style blindly
without understanding the reasons

behind that design principle.
https://en.wikipedia.org/wiki/Cargo_cult_programming

Changes to a layered architecture
usually result in changes

across all layers

Package by feature

Organise code based upon
what the code does from
a functional perspective

Features, domain concepts,
aggregate roots, etc

Package by feature
is a “vertical” slicing

Cited benefits include higher
cohesion, lower coupling, and
related code is easier to find

Web Application

Relational
Database

Business/domain

Web Application

Relational
Database

Business/domain

Abstraction (e.g. ORM)

Web Application

Relational
Database

Business/domain

Abstraction abstraction

Abstraction (e.g. ORM)

Ports and adapters,
hexagonal, clean,

onion, etc

Keep domain related code separate
from technical details

The “inside” is technology agnostic,
and is often described in terms

of a ubiquitous language

The “outside” is technology specific

The “outside” depends
upon the “inside”

Infrastructure
(outside)

Domain
(inside)

This approach
is also

“cargo culted”,
yet not all

frameworks
are equal

But…

Hi, can you add
feature X to the

orders functionality?

Sure!

“ ”
A big ball of mud is a casually, even
haphazardly, structured system. Its
organization, if one can call it that,

is dictated more by expediency
than design.

Big Ball of Mud
Brian Foote and Joseph Yoder

Architectural principles
introduce consistency via
constraints and guidelines

“ ”web controllers should never
access repositories directly

“ ”we enforce this principle through
good discipline and code reviews,
because we trust our developers

Responsible, professional software
developers are still human :-)

It’s 2024! In a world of artificial
intelligence and machine learning,

why don’t we use tools to
help us build “good” software?

“Fitness functions”
(e.g. cyclic complexity, coupling, etc)

Tooling?
Static analysis tools, architecture violation checking, etc

“ ”types in package **/web should
not access types in **/data

Using tools to assert good code
structure seems like a hack

“ ”But Java’s access modifiers
are flawed…

Package by component

Organise code by bundling together
everything related to a “component”

Component?
a grouping of related functionality,

accessed via a well-defined interface,
residing inside an application (i.e. a C4 container)

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are

implemented by one or more code elements (classes, interfaces, objects, functions, etc).

Code Code Code

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Software System

Package by component is about
applying component-based or

service-oriented design thinking
to a monolithic codebase

Modularity as a principle

Separating interface
from implementation

Impermeable
boundaries

Access modifiers vs
network boundaries

Component

Data

Business

Uses

Microservice

Data

Business

Uses

Public API Public API

The devil is in the
implementation details

public

Organisation vs encapsulation

If you make all types public,
architectural styles

can be conceptually different,
but syntactically identical

Use encapsulation to minimise the
number of potential dependencies

The surface area of your internal
public APIs should match your

architectural intent

If you’re building a monolithic
application with a single codebase,

try to use the compiler to
enforce boundaries

Or other decoupling modes such as a
module framework that differentiates

public from published types
(e.g. Java module system, Spring Modulith)

Or split the source code tree
into multiple parts

Infrastructure

Domain

There are real-world trade-offs
with many source code trees

And, more generally, each decoupling
mode has different trade-offs

(modular monoliths vs microservices)

Should the relationship between
software architecture, code, and tests be more explicit?

Software architecture

Code Tests

Code Tests
Tests focused on individual classes

and methods, sometimes by
mocking out dependencies

(“unit” tests)

Component and Service Tests
Tests focused on components and services

through their public interface
(“integration” tests)

System Tests
UI, API, functional and

acceptance tests, (“end-to-end” tests)

Granularity vs testability
(some architectural styles, when combined with

dependency injection and “unit testing” promote high testability
… perhaps at the expense of coarse-grained modularity?)

A good architecture rarely
happens through

architecture-indifferent design

Monolithic
big ball of mud

Modular
monolith

Microservices

Distributed
big ball of mud

Number of deployment units

M
od

ul
ar

ity

Well-defined, in-process components is a
stepping stone to out-of-process components

(i.e. microservices)

From components
to microservices

High cohesion
Low coupling

Focussed on a business capability
Bounded context or aggregate

Encapsulated data
Substitutable
Composable

< All of that plus

Individually deployable
Individually upgradeable
Individually replaceable

Individually scalable
Heterogeneous technology stacks

Choose microservices for the benefits,
not because your monolithic

codebase is a mess

Whatever architectural approach
you choose, don’t forget about
the implementation details

Beware of the
model-code gap

Simon Brown

Thank you!

