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What is software 
architecture?
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Structure 
The definition of software in terms 

of its building blocks and their interactions
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Vision 
The process of architecting; 

making decisions based upon business goals, 
requirements and constraints, 

plus being able to communicate this to a team



@simonbrown

Enterprise Architecture 
Structure and strategy across people, process and technology

System Architecture 
High-level structure of a software system 

(software and infrastructure)

Application Architecture 
The internal structure of an application
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As a noun, design is the named structure 
or behaviour of a system whose presence 

resolves ... a force on that system. A 
design thus represents one point in a 

potential decision space.
Grady Booch
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All architecture is design, but 
not all design is architecture.

Grady Booch
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Architecture represents the 
significant decisions, where significance 

is measured by cost of change.

Grady Booch
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As architects, we define 
the significant decisions
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Curly braces on the same or next line 
Whitespace vs tabs

Programming language 
Monolith, microservices or hybrid approachArchitecture

Design

Implementation



Design a software solution for 
the ”Financial Risk System”. 

Draw one or more software architecture diagrams 
to describe your solution, on flip chart paper.

60 minutes
architectis.je



Swap and review your diagrams 
Focus on the diagrams rather than the design; 

do you understand the notation, colour coding, symbols, etc? 

3 things you like 
3 things that could be improved 

A score between 1-10

15 minutes
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Information is likely 
still stuck in your heads
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This doesn’t make sense, 
but we’ll explain it.
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• What is this shape/symbol? 
• What is this line/arrow? 
• What do the colours mean? 
• What level of abstraction is shown? 
• Which diagram do we read first?
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The producer-consumer conflict 
of software architecture diagrams

I don’t want to put 
technology choices on 

the diagrams…
I wish these diagrams 
included technology 

choices…

Producer Consumer

Software design should 
be technology 
independent…
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If you’re going to use “boxes & lines”, 
at least do so in a structured way, 
using a self-describing notation
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Moving fast in the same direction 
as a team requires 

good communication
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Do you use UML?
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In my experience, optimistically, 

1 out of 10 people use UML



#2 “Not everybody else on the team knows it.” 
#3 “I’m the only person on the team who knows it.” 

#36 “You’ll be seen as old.” 
#37 “You’ll be seen as old-fashioned.” 

#66 “The tooling sucks.” 
#80 “It’s too detailed.” 

#81 “It’s a very elaborate waste of time.” 
#92 “It’s not expected in agile.” 

#97 “The value is in the conversation.”
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If you’re using UML, ArchiMate, 
SysML, BPML, DFDs, etc 

and it’s working … keep doing that!
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Who are the stakeholders that 
you need to communicate 
software architecture to; 

what information do they need?
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There are many different audiences for diagrams 
and documentation, all with different interests 

(software architects, software developers, operations and support staff, testers, 
Product Owners, project managers, Scrum Masters, users, management, 

business sponsors, potential customers, potential investors, …)
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The primary use for 
diagrams and documentation is 
communication and learning
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To describe a software architecture, 
we use a model composed of 

multiple views or perspectives.
Architectural Blueprints - The “4+1” View Model of Software Architecture 

Philippe Kruchten
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“Viewpoints and Perspectives”
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Why is there a separation 
between the logical and 

development views?
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Our architecture diagrams 
don’t match the code.
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“model-code gap”
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We lack a common vocabulary 
to describe software architecture
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@simonbrownhttps://en.wikipedia.org/wiki/Circuit_diagram



@simonbrownhttps://en.wikipedia.org/wiki/Component_diagram
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Software System

Web 
Application

Logging 
Component

Relational 
Database
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Ubiquitous 
language
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Would you code it that way? 
(ensure that your diagrams reflect 

your implementation intent)
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When drawing software 
architecture diagrams, 

think like a software developer
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If software developers created building architecture diagrams…
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A common set of abstractions 
is more important 

than a common notation
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Abstractions
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A software system is made up of one or more containers (applications and data 
stores), each of which contains one or more components, which in turn are 

implemented by one or more code elements (classes, interfaces, objects, functions, etc).

Code Code Code

Component Component Component

Container 
(e.g. client-side web app, server-side web app, console application, 

mobile app, database schema, file system, object store, etc)

Container 
(e.g. client-side web app, server-side web app, console application, 

mobile app, database schema, file system, object store, etc)

Container 
(e.g. client-side web app, server-side web app, console application, 

mobile app, database schema, file system, object store, etc)

Software System
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Static structure diagrams
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C4 
c4model.com



Zoom in

Zoom in

Level 1 

Context
Level 2 

Containers
Level 3 

Components
Level 4 

Code

Zoom in

The C4 model for visualising 
software architecture 

c4model.com
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Diagrams are maps 
that help software developers navigate a large and/or complex codebase
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4. Code (e.g. classes) 
Component implementation details.

1. System Context 
The system plus users and system dependencies.

2. Containers 
The overall shape of the architecture and technology choices.

3. Components 
Logical components and their interactions within a container.

Overview first

Zoom & filter

Details on demand
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Example 
(Internet Banking System)
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Level 1 

System Context diagram
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Level 2 

Container diagram



The container diagram shows the 
containers that reside inside 

the software system boundary
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Level 3 

Component diagram



The component diagram 
shows the components 

that reside inside an 
individual container
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Level 4 

Code diagram



The code level diagram shows the code 
elements that make up a component
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Notation
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The C4 model is 
notation independent
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The C4 model is 
notation independent
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Titles 
Short and meaningful, include the diagram type, 

numbered if diagram order is important; for example: 

System Context diagram for Financial Risk System 
[System Context] Financial Risk System
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Visual consistency 
Try to be consistent with notation 

and element positioning across diagrams
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Acronyms 
Be wary of using acronyms, especially those related 

to the business/domain that you work in
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Boxes 
Start with simple boxes containing the element name, type, 
technology (if appropriate) and a description/responsibilities
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Internet Banking System 
[Software System] 

Allows customers to view information 
about their bank accounts, 

and make payments.

Personal Banking 
Customer 

[Person] 

A customer of the bank, with 
personal bank accounts.

Mainframe Banking 
System Facade 

[Component: Spring Bean] 

A facade onto the mainframe 
banking system.

API Application 
[Container: Java and Spring MVC] 

Provides Internet banking functionality 
via a JSON/HTTPS API.
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Lines 
Favour uni-directional lines showing the most important 

dependencies or data flow, with an annotation to be explicit 
about the purpose of the line and direction

No Yes
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Summarise the intent of the relationship

Single Page Application 
[Container]

API Application 
[Container]

Makes an API request to

Single Page Application 
[Container]

API Application 
[Container]

Makes API calls using

Sends an API response to
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Summarise, yet be specific

Single Page Application 
[Container]

API Application 
[Container]

Single Page Application 
[Container]

API Application 
[Container]

Makes API calls using

Uses
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Show both directions when 
the intents are different

Microservice A 
[Container]

Microservice B 
[Container]

Requests a list of customers from 
[JSON/HTTPS]

Sends new customers to 
[Kafka topic]
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Beware of hiding the true story

Sends messages to

Microservice D 
[Container]

Microservice C 
[Container]

Sends messages to

Sends messages to

Sends messages to
Microservice B 

[Container]

Microservice A 
[Container]

Kafka 
[Container]
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Beware of hiding the true story

Sends customer update messages to

Microservice D 
[Container]

Microservice C 
[Container]Sends customer update messages to

Microservice B 
[Container]

Microservice A 
[Container]

Topic X 
 [Container: Kafka 

Topic]

Topic Y 
 [Container: Kafka 

Topic]Sends order creation messages to Sends order creation messages to
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Beware of hiding the true story

Sends customer update messages to

Microservice D 
[Container]

Microservice C 
[Container]Subscribes to customer update 

messages from

Microservice B 
[Container]

Microservice A 
[Container]

Topic X 
 [Container: Kafka 

Topic]

Topic Y 
 [Container: Kafka 

Topic]Sends order creation messages to
Subscribes to order creation 

messages from
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Beware of hiding the true story

Sends customer update messages to 
[via Kafka topic X]

Microservice D 
[Container]

Microservice C 
[Container]

Sends order creation messages to 
[via Kafka topic Y]

Microservice A 
[Container]

Microservice B 
[Container]
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Add more words to make the intent explicit

Trade Data System 
[Software System]

Financial Risk System 
[Software System]

Trade data

Trade Data System 
[Software System]

Financial Risk System 
[Software System]

Sends trade data to
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Read the relationship out loud

Web Application 
[Container]

Database 
[Container]

Reads from and writes to
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Key/legend 
Explain shapes, line styles, colours, borders, acronyms, etc 

… even if your notation seems obvious!
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Arrowheads 
Be careful, using different 
arrowheads is very subtle; 

readers may miss them 
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Use shape, colour and size 
to complement a diagram 
that already makes sense
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Be careful with icons
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Increase the readability of 
software architecture diagrams, 

so they can stand alone
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Any narrative should complement 
the diagram rather than explain it
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Abstractions first, 
notation second 

Ensure that your team has a ubiquitous 
language to describe software architecture



Draw a System Context 
and a Container diagram

90 minutes



@simonbrown

Designing software is where 
the complexity should be, 

not communicating it!
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The diagrams should spark 
meaningful questions
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No 
“What does that arrow mean?” 

“Why are some boxes red?” 
“Is that a Java application?” 

“Is that a monolithic application, or a collection of microservices?” 
“How do the users get their reports?”



@simonbrown

Yes 
“What protocol are your two Java applications using 

to communicate with each other?” 
“Why do you have two separate C# applications instead of one?” 

“Why are you using MongoDB?” 
“Why are you using MySQL when our standard is Oracle?” 

“Should we really build new applications with .NET Framework 
rather than .NET Core?”
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Richer diagrams lead to 
richer design discussions
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Richer diagrams lead to 
better communication, 

making it easier to scale teams
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Similar levels of abstraction provide  
a way to easily compare solutions
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System landscape diagrams
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Runtime/behavioural diagrams
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Static structure diagrams 
are very useful, but they 
don’t tell the whole story
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Use dynamic diagrams to describe 
patterns or complex interactions
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Deployment diagrams
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Deployment is about the mapping 
of containers to infrastructure
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Deployment Node 
Physical infrastructure (a physical server or device), 

virtualised infrastructure (IaaS, PaaS, a virtual machine), 
containerised infrastructure (a Docker container), 
database server, Java EE web/application server, 

Microsoft IIS, etc
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A deployment node can contain 
other deployment nodes or 

software system/container instances
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Infrastructure Node 
Routers, firewalls, load balancers, 
DNS providers, edge caches, etc





@simonbrown

What tooling do you recommend?



c4model.com



Simon Brown
@simonbrown

Thank you!


