
Simon Brown
@simonbrown

Visualising software architecture
with the C4 model

@simonbrown

Simon Brown
Independent consultant specialising in software architecture,

plus the creator of the C4 model and Structurizr

@simonbrown

What is software
architecture?

@simonbrown

Structure
The definition of software in terms

of its building blocks and their interactions

@simonbrown

Vision
The process of architecting;

making decisions based upon business goals,
requirements and constraints,

plus being able to communicate this to a team

@simonbrown

Enterprise Architecture
Structure and strategy across people, process and technology

System Architecture
High-level structure of a software system

(software and infrastructure)

Application Architecture
The internal structure of an application

“ ”@simonbrown

As a noun, design is the named structure
or behaviour of a system whose presence

resolves ... a force on that system. A
design thus represents one point in a

potential decision space.
Grady Booch

“ ”@simonbrown

All architecture is design, but
not all design is architecture.

Grady Booch

“ ”@simonbrown

Architecture represents the
significant decisions, where significance

is measured by cost of change.

Grady Booch

@simonbrown

As architects, we define
the significant decisions

@simonbrown

Curly braces on the same or next line
Whitespace vs tabs

Programming language
Monolith, microservices or hybrid approachArchitecture

Design

Implementation

Design a software solution for
the ”Financial Risk System”.

Draw one or more software architecture diagrams
to describe your solution, on flip chart paper.

60 minutes
architectis.je

Swap and review your diagrams
Focus on the diagrams rather than the design;

do you understand the notation, colour coding, symbols, etc?

3 things you like
3 things that could be improved

A score between 1-10

15 minutes

@simonbrown

1 1 1 2 2 2

@simonbrown

Information is likely
still stuck in your heads

“ ”@simonbrown

This doesn’t make sense,
but we’ll explain it.

@simonbrown

• What is this shape/symbol?
• What is this line/arrow?
• What do the colours mean?
• What level of abstraction is shown?
• Which diagram do we read first?

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

The producer-consumer conflict
of software architecture diagrams

I don’t want to put
technology choices on

the diagrams…
I wish these diagrams
included technology

choices…

Producer Consumer

Software design should
be technology
independent…

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

7

@simonbrown

6

@simonbrown

@simonbrown

If you’re going to use “boxes & lines”,
at least do so in a structured way,
using a self-describing notation

@simonbrown

Moving fast in the same direction
as a team requires

good communication

@simonbrown

Do you use UML?

@simonbrown

In my experience, optimistically,

1 out of 10 people use UML

#2 “Not everybody else on the team knows it.”
#3 “I’m the only person on the team who knows it.”

#36 “You’ll be seen as old.”
#37 “You’ll be seen as old-fashioned.”

#66 “The tooling sucks.”
#80 “It’s too detailed.”

#81 “It’s a very elaborate waste of time.”
#92 “It’s not expected in agile.”

#97 “The value is in the conversation.”

@simonbrown

If you’re using UML, ArchiMate,
SysML, BPML, DFDs, etc

and it’s working … keep doing that!

@simonbrown

Who are the stakeholders that
you need to communicate
software architecture to;

what information do they need?

@simonbrown

There are many different audiences for diagrams
and documentation, all with different interests

(software architects, software developers, operations and support staff, testers,
Product Owners, project managers, Scrum Masters, users, management,

business sponsors, potential customers, potential investors, …)

@simonbrown

The primary use for
diagrams and documentation is
communication and learning

“ ”@simonbrown

To describe a software architecture,
we use a model composed of

multiple views or perspectives.
Architectural Blueprints - The “4+1” View Model of Software Architecture

Philippe Kruchten

@simonbrown

@simonbrown

“Viewpoints and Perspectives”

@simonbrown

Why is there a separation
between the logical and

development views?

“ ”@simonbrown

Our architecture diagrams
don’t match the code.

@simonbrown

“model-code gap”

@simonbrown

@simonbrown

We lack a common vocabulary
to describe software architecture

@simonbrown

@simonbrown

@simonbrownhttps://en.wikipedia.org/wiki/Circuit_diagram

@simonbrownhttps://en.wikipedia.org/wiki/Component_diagram

@simonbrown

Software System

Web
Application

Logging
Component

Relational
Database

@simonbrown

Ubiquitous
language

@simonbrown

Would you code it that way?
(ensure that your diagrams reflect

your implementation intent)

@simonbrown

When drawing software
architecture diagrams,

think like a software developer

@simonbrown

If software developers created building architecture diagrams…

Hallway

Stairs

Kitchen Living Room

Bed1

Bed3Bed2Stairs Bathroom

Bathroom

W
at

er
 in

W
at

er
 o

ut

 P
ea

k
el

ec
tri

ci
ty

 O
ff-

pe
ak

 e
le

ct
ric

ity

@simonbrown

A common set of abstractions
is more important

than a common notation

@simonbrown

Abstractions

@simonbrown

A software system is made up of one or more containers (applications and data
stores), each of which contains one or more components, which in turn are

implemented by one or more code elements (classes, interfaces, objects, functions, etc).

Code Code Code

Component Component Component

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Container
(e.g. client-side web app, server-side web app, console application,

mobile app, database schema, file system, object store, etc)

Software System

@simonbrown

Static structure diagrams

@simonbrown

C4
c4model.com

Zoom in

Zoom in

Level 1

Context
Level 2

Containers
Level 3

Components
Level 4

Code

Zoom in

The C4 model for visualising
software architecture

c4model.com

@simonbrown

Diagrams are maps
that help software developers navigate a large and/or complex codebase

@simonbrown

4. Code (e.g. classes)
Component implementation details.

1. System Context
The system plus users and system dependencies.

2. Containers
The overall shape of the architecture and technology choices.

3. Components
Logical components and their interactions within a container.

Overview first

Zoom & filter

Details on demand

@simonbrown

Example
(Internet Banking System)

@simonbrown

Level 1

System Context diagram

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Level 2

Container diagram

The container diagram shows the
containers that reside inside

the software system boundary

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Level 3

Component diagram

The component diagram
shows the components

that reside inside an
individual container

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Level 4

Code diagram

The code level diagram shows the code
elements that make up a component

@simonbrown

@simonbrown

Notation

@simonbrown

The C4 model is
notation independent

@simonbrown

The C4 model is
notation independent

@simonbrown

Titles
Short and meaningful, include the diagram type,

numbered if diagram order is important; for example:

System Context diagram for Financial Risk System
[System Context] Financial Risk System

@simonbrown

Visual consistency
Try to be consistent with notation

and element positioning across diagrams

@simonbrown

Acronyms
Be wary of using acronyms, especially those related

to the business/domain that you work in

@simonbrown

Boxes
Start with simple boxes containing the element name, type,
technology (if appropriate) and a description/responsibilities

@simonbrown

Internet Banking System
[Software System]

Allows customers to view information
about their bank accounts,

and make payments.

Personal Banking
Customer

[Person]

A customer of the bank, with
personal bank accounts.

Mainframe Banking
System Facade

[Component: Spring Bean]

A facade onto the mainframe
banking system.

API Application
[Container: Java and Spring MVC]

Provides Internet banking functionality
via a JSON/HTTPS API.

@simonbrown

@simonbrown

@simonbrown

Lines
Favour uni-directional lines showing the most important

dependencies or data flow, with an annotation to be explicit
about the purpose of the line and direction

No Yes

@simonbrown

Summarise the intent of the relationship

Single Page Application
[Container]

API Application
[Container]

Makes an API request to

Single Page Application
[Container]

API Application
[Container]

Makes API calls using

Sends an API response to

@simonbrown

Summarise, yet be specific

Single Page Application
[Container]

API Application
[Container]

Single Page Application
[Container]

API Application
[Container]

Makes API calls using

Uses

@simonbrown

Show both directions when
the intents are different

Microservice A
[Container]

Microservice B
[Container]

Requests a list of customers from
[JSON/HTTPS]

Sends new customers to
[Kafka topic]

@simonbrown

Beware of hiding the true story

Sends messages to

Microservice D
[Container]

Microservice C
[Container]

Sends messages to

Sends messages to

Sends messages to
Microservice B

[Container]

Microservice A
[Container]

Kafka
[Container]

@simonbrown

Beware of hiding the true story

Sends customer update messages to

Microservice D
[Container]

Microservice C
[Container]Sends customer update messages to

Microservice B
[Container]

Microservice A
[Container]

Topic X
 [Container: Kafka

Topic]

Topic Y
 [Container: Kafka

Topic]Sends order creation messages to Sends order creation messages to

@simonbrown

Beware of hiding the true story

Sends customer update messages to

Microservice D
[Container]

Microservice C
[Container]Subscribes to customer update

messages from

Microservice B
[Container]

Microservice A
[Container]

Topic X
 [Container: Kafka

Topic]

Topic Y
 [Container: Kafka

Topic]Sends order creation messages to
Subscribes to order creation

messages from

@simonbrown

Beware of hiding the true story

Sends customer update messages to
[via Kafka topic X]

Microservice D
[Container]

Microservice C
[Container]

Sends order creation messages to
[via Kafka topic Y]

Microservice A
[Container]

Microservice B
[Container]

@simonbrown

Add more words to make the intent explicit

Trade Data System
[Software System]

Financial Risk System
[Software System]

Trade data

Trade Data System
[Software System]

Financial Risk System
[Software System]

Sends trade data to

@simonbrown

Read the relationship out loud

Web Application
[Container]

Database
[Container]

Reads from and writes to

@simonbrown

Key/legend
Explain shapes, line styles, colours, borders, acronyms, etc

… even if your notation seems obvious!

@simonbrown

@simonbrown

Arrowheads
Be careful, using different
arrowheads is very subtle;

readers may miss them

@simonbrown

Use shape, colour and size
to complement a diagram
that already makes sense

@simonbrown

@simonbrown

Be careful with icons

@simonbrown

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Increase the readability of
software architecture diagrams,

so they can stand alone

@simonbrown

Any narrative should complement
the diagram rather than explain it

@simonbrown

@simonbrown

Abstractions first,
notation second

Ensure that your team has a ubiquitous
language to describe software architecture

Draw a System Context
and a Container diagram

90 minutes

@simonbrown

Designing software is where
the complexity should be,

not communicating it!

@simonbrown

The diagrams should spark
meaningful questions

@simonbrown

No
“What does that arrow mean?”

“Why are some boxes red?”
“Is that a Java application?”

“Is that a monolithic application, or a collection of microservices?”
“How do the users get their reports?”

@simonbrown

Yes
“What protocol are your two Java applications using

to communicate with each other?”
“Why do you have two separate C# applications instead of one?”

“Why are you using MongoDB?”
“Why are you using MySQL when our standard is Oracle?”

“Should we really build new applications with .NET Framework
rather than .NET Core?”

@simonbrown

Richer diagrams lead to
richer design discussions

@simonbrown

Richer diagrams lead to
better communication,

making it easier to scale teams

@simonbrown

Similar levels of abstraction provide
a way to easily compare solutions

@simonbrown

System landscape diagrams

@simonbrown

@simonbrown

@simonbrown

Runtime/behavioural diagrams

@simonbrown

Static structure diagrams
are very useful, but they
don’t tell the whole story

@simonbrown

@simonbrown

@simonbrown

@simonbrown

Use dynamic diagrams to describe
patterns or complex interactions

@simonbrown

Deployment diagrams

@simonbrown

Deployment is about the mapping
of containers to infrastructure

@simonbrown

Deployment Node
Physical infrastructure (a physical server or device),

virtualised infrastructure (IaaS, PaaS, a virtual machine),
containerised infrastructure (a Docker container),
database server, Java EE web/application server,

Microsoft IIS, etc

@simonbrown

A deployment node can contain
other deployment nodes or

software system/container instances

@simonbrown

Infrastructure Node
Routers, firewalls, load balancers,
DNS providers, edge caches, etc

@simonbrown

What tooling do you recommend?

c4model.com

Simon Brown
@simonbrown

Thank you!

